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[1] Using in situ observations and numerical modeling, this study investigates the
dynamical mechanisms of seasonal variability of water temperature in the Yellow Sea
(YS). Observations indicate that bottom temperature lags 3–4 months behind surface
temperature in reaching a maximum in the central YS. Wave-tide-circulation coupled
model simulates this time lag and indicates that the diffusion process is a key factor
governing the temperature variation below the surface layer. Based on the diffusion
equation of temperature, a scheme is developed to estimate the vertical diffusion
coefficient. At an observation station located at 36�000N 124�000E, the diffusion
coefficients from April to September are estimated by using the temperature data from
1954 to 1985. The mean diffusion coefficient (MDC) in the upper layer from 0 m to 15 m
is almost one order of magnitude larger than those in the middle layer from 20 to 40 m,
except in April. In the middle layer, the MDC is inversely proportional to the squared
buoyancy frequency, and the mean value of MDC averaged from June to September is
0.28 cm2 s�1. The inverse proportionality agrees with the Osborn’s relation, which has
been used to estimate the diapycnal diffusivity.

Citation: Dai, D., F. Qiao, C. Xia, and K. T. Jung (2006), A numerical study on dynamic mechanisms of seasonal temperature

variability in the Yellow Sea, J. Geophys. Res., 111, C11S05, doi:10.1029/2005JC003253.

1. Introduction and Background

[2] The Yellow Sea (YS) is a semi-enclosed basin, with a
horizontal scale of about 400 km by 800 km and a
maximum depth of about 85 m as shown in Figure 1. The
thermal structure in the YS has drawn a lot of interest
because of its significance in the physical oceanography, the
biological environment, and acoustic properties. He et al.
[1959] and Miao et al. [1991] studied the generation
mechanism of Yellow Sea Cold Water Mass (YSCWM).
Kwan [1963], Yuan [1979], Yuan and Li [1993], Feng et al.
[1992], and Su and Huang [1995] discussed the thermal
structure and circulation pattern in the YSCWM. Numerical
methods were also developed to simulate and predict the
vertical thermal structure in the YSCWM using a similarity
function of the vertical temperature profile [Wang et al.,
1996a, 1996b; Jin et al., 1996].
[3] Since the YS is a broad and shallow basin, the entire

water column in it is directly exposed to seasonal atmo-
spheric forcing. In fact, water temperature from the top to
the bottom shows an obvious seasonal variability. Chu et al.
[1997] developed a thermal parametric model based on a
layered temperature fields (including a mixed layer, ther-
mocline, and deep layers) to study the characteristics of

such seasonal temperature variation. Their further study
found that surface heat flux accounts for the water temper-
ature variation [Chu et al., 2005]. However, the question,
how does the ocean dynamically respond to atmospheric
forcing, still remains unclear.
[4] We have collected temperature observations in the YS

and Bohai Sea from 1954 to 1985. Figure 2 shows annual
temperature variations at Station A (36�000N 124�000E)
(location shown in Figure 1). One can see that the surface
temperature reached a maximum of 26.0�C in mid-August.
After a time lag of 4 months, the bottom temperature
reached its maximum of 9.5�C in mid-December. This
regular phase lag in temperature was also observed at
different stations in the YS by previous investigators
[Kwan, 1963]. The maximum bottom temperature had
phase propagation (Figure 3). In the coastal region, the
maximum of bottom temperature occurred in September
while in the central region, the maximum occurred in
November or December. The time delay is a universal
phenomenon in the YS rather than a peculiar case occurring
only from 1954 to 1985 [Su and Yuan, 2005]. The surface
temperatures always reach their maximums in mid-August,
this implies that themaximums at the bottom lags 3–4months
behind those at the surface in the central YS. So far,
however, the dynamic mechanism of this phenomenon
has not yet been explored. Therefore, this study aims to
gain an insight into the dynamics that controls the
temperature variation below the surface layer using nu-
merical modeling methods.
[5] The simulated results from wave-tide-circulation cou-

pled model are given in the next section. Section 3 gives the
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diffusion coefficients estimated from the observed temper-
atures at Station A using a scheme based on temperature
diffusion equation. Results are discussed and summarized in
sections 4 and 5.

2. Results From the MASNUM Coupled Model

[6] The wave-tide-circulation coupled model used in this
study, was developed in the Key Laboratory of Marine
Science and Numerical Modeling (MASNUM) [Qiao et al.,
2004a, 2004b; Xia et al., 2006]. The circulation part of the
model is adapted from the Princeton Ocean Model (POM),
which embeds a 2.5-level turbulence closure scheme to
calculate the vertical turbulence mixing [Mellor and
Yamada, 1982]. As a common problem, the turbulence
closure scheme underestimates surface mixing, so that the
simulated mixed layer depth is unrealistically shallow. Thus
the sea surface temperature is overestimated, especially in
summer [Martin, 1985; Kantha and Clayson, 1994; Ezer,
2000; Mellor, 2001]. Qiao et al. [2004a, 2004b] suggested
that wave-induced mixing plays a key role in formation of
the upper mixed layer, especially in spring and summer, and
introduced it into the numerical simulation. In order to
improve the upper mixed layer simulation, the coupled
model embeds a MASNUM wave-number spectral scheme
(once called LAGFD-WAM) [Yuan et al., 1991], which is
used to calculate a wave-induced mixing parameter Bv.
Then, Bv is added to the vertical viscosity KM and diffu-
sivity KH, which are calculated by the 2.5-level turbulence
closure model in POM. In addition, tidal currents are
considered to be important in inducing strong bottom
mixing in a shallow water region. Thus, a tidal current
simulation is also included in the model.
[7] To reduce the influence of open boundary conditions,

the computational domain covers the Bohai Sea, YS, East

China Sea (ESC), South China Sea (SCS) and a portion
of the northwest Pacific. The horizontal resolution is 1/6� �
1/6�. With a fine resolution in the upper layers, the
16 vertical sigma layers from the surface to the bottom
are 0.000, �0.003, �0.006, �0.013, �0.025, �0.050,
�0.100, �0.200, �0.300, �0.400, �0.500, �0.600,
�0.700, �0.800, �0.900, and �1.00. The model is forced
by monthly climatological wind stress, net heat flux, and
evaporation minus precipitation (E-P) from the Comprehen-
sive Ocean-Atmosphere Data Set (COADS) [da Silva et al.,
1994a, 1994b].
[8] Open lateral boundary conditions (temperature, salin-

ity, sea level, and velocity), initial sea level, and current

Figure 1. Topography of the Yellow Sea and Bohai Sea (the contour interval is 20 m). The asterisk
shows the location of Station A, where the water depth is 79 m.

Figure 2. Seasonal variations of water temperature in
different levels at Station A.
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fields are provided by a global 1/2� � 1/2� MASNUM
model output after interpolating them onto the model grids
[Xia et al., 2004a, 2004b]. The annual mean Levitus
climatology [Levitus, 1982] is used for initial temperature
and salinity conditions. The Yangtze River runoff is included
as a boundary condition [Qiao et al., 2004a], which comes
from a monthly climatological data set constructed from a
35-year river discharge record at the Datong Observation
Station. The model spins up for 6 years and the results of
the last year are used to study the seasonal variability of
temperature. The tidal currents, circulation, salinity, and
temperature of YSCWM have been analyzed and validated
by the observations [Qiao et al., 2004a; Xia et al., 2006].
[9] The model simulates spatial patterns and temporal

variability of temperature well. An evident improvement is
that the modeled upper mixed layer is much more reason-
able than the result generated by the original POM model
[Qiao et al., 2004a, 2004b]. Figure 4 shows the simulation
results for month in which the bottom temperature reaches
its maximum (peak month). The peak month changes
gradually from September near the coastal water to Decem-
ber in the central YS. One can see that the general patterns
displayed in Figure 4 are similar to those of Figure 3, with
only minor differences in fine details. Moreover, the isolines
of the peak month in Figures 3 and 4 are almost parallel to
the isobaths (Figure 1), implying that diffusion might be a
key factor controlling the temperature variations below the
surface layer. In shallow water, atmospheric heat flux can
quickly be transported from the surface to the bottom
through diffusion, so that the bottom temperature lags only
1 or 2 months behind the surface temperature in reaching a
maximum. In deep water, the thermocline impedes heat flux
entering the deep layer, and thus longer time is needed to
convey the surface heat flux to the bottom. This point will
be analyzed in the following sections.

[10] In Cartesian coordinates, the temperature variation is
governed by the following equation
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where x,y,z denote the Cartesian coordinates, T the
temperature, U,V,W the velocity components in x,y,z
directions respectively, kz the vertical diffusion coefficient,
and kH the horizontal diffusion coefficient. Scale analysis
indicates that the terms W @T
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In order to determine a key factor responsible for the
temperature variation, the advection terms or the vertical
diffusion term, the ratio of the diffusion term to the sum of
advection terms is calculated,
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In the months when convection occurs, the diffusion
coefficient kz becomes very large, so that the calculation
errors about the diffusion term may become large. To reduce
the errors, we average the ratios of the diffusion to the
advection terms from April to October. The results are

Figure 3. The month in which the observed bottom
temperature reaches its maximum. Numerals on the isolines
represent months: 9, September; 10, October; 11, Novem-
ber; 12, December.

Figure 4. The simulation results for month in which the
bottom temperature reaches its maximum. Numerals on the
isolines represent months: 9, September; 10, October; 11,
November; 12, December.
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shown in Figure 5. The left panel shows the horizontal
distribution at the 30 m level. One can see that the mean
ratios are larger than 3 in most of the regions, and even
larger than 5 in the central YS. Similar results can also be
found in the right panel, which shows a vertical transect
along 36�N. The large ratios indicate that the diffusion term
rather than the advection terms is the dominant factor
controlling temperature variation. Hence, equation (2) can
be reduced further to

@T
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¼ @

@z
kz
@T

@z

� �
: ð4Þ

[11] The physical processes defined in the Cartesian
coordinate are used to identify the dominant factor control-
ling the temperature variation. However, it is really along-
isopycnal advection and diffusion that should be compared
with the effects of diapycnal diffusion, rather than strictly
horizontal advection and diffusion. Heating by the horizon-
tal advection and diffusion could be much larger in a model
than it is in the real ocean because of sloping isopycnal
surfaces. In the isopycnal-diapycnal coordinates, it might be
even more reasonable to neglect the isopycnal processes.
[12] Observations and numerical results from the coupled

model indicate that the isothermal surfaces are almost
horizontal in the central YS from April to September [Qiao
et al., 2004a; Su and Yuan, 2005; Xia et al., 2006], implying
that the physical processes defined in the Cartesian coor-
dinates, such as the advection and the diffusion, are equiv-
alent to those defined in the isopycnal-diapycnal
coordinates in the central YS. It is therefore reasonable to
conclude that the horizontal advection plays a small role
compared to the vertical diffusion in the seasonal temper-
ature variation, as shown in Figure 5. The vertical diffusion
in equation (4) can be considered as the diapycnal diffusion,
kz, the diapycnal diffusion coefficient in the central YS.
However, the contribution of horizontal advections and
diffusion to the temperature variation may be much larger
in the coastal water because of the sloping isothermal

surfaces, i.e., the simplified governing equation (4) for the
temperature variation is satisfied only in the central YS.

3. Estimated Diffusion Coefficient at Station A

[13] The above analyses indicate that the diffusion is the
dominant process responsible for water temperature varia-
tions below the surface layer in the central YS. In order to
understand the corresponding dynamical processes, a
scheme is established to estimate the diffusion coefficient
from temperature observations (see Appendix A). In the
scheme, equation (4) is the governing equation for the
temperature variation. The surface temperature is specified
as the surface boundary condition,

T jz¼0 ¼ Tsurf tð Þ; ð5Þ

and a zero-flux condition at the bottom boundary is
specified, i.e.,

@T

@z
jz¼�H ¼ 0: ð6Þ

The cost function for estimating the diffusion coefficient is a
mean squared temperature error divided by the mean
squared temperature excursions between the neighboring
observations at each level. The details about the estimation
scheme can be found in Appendix A. Once the neighboring
observed temperature profiles are provided, the diffusion
coefficient can be estimated using the scheme.
[14] The water temperature observed at Station A from

1954 to 1985 was not uniformly sampled. The original data
were reprocessed to generate a climatological vertical tem-
perature data set with about 10-day resolution, namely, three
profiles per month. A year is divided into 36 spans, with
three spans for each month. The first and second spans of
each month contain ten days, while the third span contains
the remaining days. All the observed data are then classified
into the 36 spans. Quality control is applied to the temper-
ature observations in every span to remove the bugs. The
remaining data are averaged to form 36 temperature pro-

Figure 5. The mean ratio of the diffusion term to the advection terms averaged from April to October at
30 m (left) and along the 36�N transect (right). The dashed line in the left panel represents the 30 m
isobath.

C11S05 DAI ET AL.: TEMPERATURE VARIABILITY IN YELLOW SEA

4 of 10

C11S05



files. The annual cycle of temperature at several selected
levels derived from this data set is shown in Figure 2.
[15] The original temperature observations were taken at

0 m, 5 m, 10 m, 15 m, 20 m, 25 m, 30 m, 35 m, 50 m, and
70 m levels. Therefore, the diffusion coefficients can be
estimated only from 0 m to 70 m (9 m above the bottom). In
order to facilitate the numerical calculation, we interpolated
the standard level data set linearly onto 1.0 m intervals. The
bottom boundary condition requires that the bottom tem-
perature must be the same as the one at the nearest higher
level. So an additional pseudo level of 71 m with the same
temperature as 70 m was added to the profile. Note that the
temperature variation is not controlled by diffusion when
convection occurs. Thus, it is difficult to obtain a reasonable
diffusion coefficient in autumn and winter using the above
diffusion equation. In this study, only the temperature data
from April to September are used to estimate the diffusion
coefficient. Since the temperature observations were repro-
cessed into the data set with 10-day resolution, three profiles
of diffusion coefficients can be obtained for every month
from the estimation scheme. A total of 18 profiles are finally
obtained. Figure 6 shows monthly profiles of the diffusion
coefficient.
[16] One can see that the diffusion coefficient profiles

share a common feature. The diffusion coefficient has a
maximum at the surface, and then gradually decreases down
to about 20 m level. In the middle layer (20–40 m), the
coefficients are smaller than those in the surface layer. A
peak value is found near 55 m from April to June. The
vertical resolution of the original temperature observations
is not high enough to describe the behavior in bottom mixed
layer (about 50–70 m at Station A). Thus, it should be
noted that the estimated diffusion coefficients below 50 m
might not give the detailed information about the bottom
mixing. Therefore, high vertical resolution observations are
necessary to further solve this issue. On the other hand,
equation (4) with boundary conditions (5) and (6) requires

that the bottom temperature increase monotonously from
March to December because of the assumption that the
surface heat flux could only be conveyed downward by
diffusion. This is opposite to the observed bottom temper-
ature which actually decreases with time in July and August
as shown in Figure 2. A previous study had revealed that the
YSCWM shifts its location with time [Su and Yuan, 2005].
Thus, the diffusion coefficients from 50 m to 70 m in July
and August may include large errors, and they are not
included in Figure 6.
[17] Figure 6 shows the seasonal variability of diffusion

coefficient. In April, the surface is heated by the increasing
heat flux while the thermocline is still weak, which results
in a large diffusion coefficient in the surface and middle
layer. As the surface temperature becomes warmer and the
thermocline becomes stronger, the heat flux becomes more
difficult to convey to the subsurface layer. So the diffusion
coefficient in the middle layer is smaller in the summer
months of June, July, and August.
[18] The mean diffusion coefficient (MDC) in the upper

layer (0–15 m) and middle layer (20–40 m) are listed in
Table 1. One can see that the MDC in the upper layer is 3.5
to 12 times as large as that in the middle layer from May to
September. In April, the MDCs in the upper and middle
layers are larger than those from May to September.
Averaged from June to September, the mean MDC in the
middle layer is 0.28 cm2 s�1, a value close to the back-
ground mixing coefficient of 0.20 cm2 s�1 as specified in
the POM model.

Figure 6. Monthly estimated diffusion coefficient at Station A.

Table 1. Mean Diffusion Coefficient Estimated From Temperature

Observations at Station A

Apr May Jun Jul Aug Sep

Upper layer, cm2 s�1 6.2 3.4 3.3 1.8 1.2 1.9
Middle layer, cm2 s�1 4.3 0.98 0.42 0.15 0.14 0.39
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[19] As analyzed above, the diffusion coefficient is a key
parameter to explain the temperature variation in the central
YS. In general, the strength of diapycnal mixing is related to
oceanic stratification and turbulence energy dissipation.
Osborn [1980] derived a formula to calculate the diapycnal
diffusivity kr,

kr ¼ g
e
N2

; ð7Þ

where N is the buoyancy frequency, e the turbulence energy
dissipation rate, and g the mixing efficiency. When the
turbulence energy dissipation rate is fixed, the diapycnal
diffusivity is inversely proportional to the squared buoyancy
frequency. We find that the inverse proportion is applicable
to the estimated diffusion coefficient from April to Septem-
ber at Station A, as shown in Figure 7. For every profile of
the estimated diffusion coefficients, we average the values
in the middle layer and obtain a mean diffusion coefficient.
In the same way, a mean value of the squared buoyancy
frequencies in the middle layer is also calculated from the
observed temperature and salinity. A total of eighteen mean
diffusion coefficients and eighteen mean squared buoyancy
frequencies are finally obtained. Their relation is illustrated
in Figure 7. It is obvious that the diffusion coefficient is
inversely proportional to the squared buoyancy frequency.
The proportionality coefficient is about 1.55 � 10�8m2 s�3,
i.e.,

kz ¼
1:55� 10�8m2s�3

N2
: ð8Þ

Comparing equation (7) with equation (8), one can see that
the proportionality coefficient actually represents the
efficiency times the turbulence energy dissipation rate.
Thus, a constant proportionality coefficient implies that the
averaged turbulence energy dissipation rate from 1954 to
1985 was invariant with seasons at Station A, if the mixing

efficiency is considered to be constant. However, this
inference is difficult to be validated in this study due to the
lack of actual observations of turbulence energy dissipation
rate.

4. Discussion

[20] The MASNUM coupled model is used to simulate
the circulation and the thermal structure in the YS in this
study. It would be of interest to compare the estimated
diffusion coefficient with the diffusion coefficient actually
used in the wave-tide-circulation model. The estimated
diffusion coefficients below 50 m could not give reliable
information because the vertical resolution of the original
temperature observations is not high enough to describe the
bottom mixed layer (about 50–70 m at Station A). Only the
diffusion coefficients from 0 m to 50 m in the coupled
model are shown in Figure 8, which illustrates the monthly
diffusion coefficient from April to September at Station A.
One can see a similar case to Figure 6, i.e., the diffusion
coefficient in the coupled model is large at the surface, and
then decreases gradually downward from April to August.
The minimum diffusion coefficient, 0.20 cm2s�1, which is
the background mixing specified in the POM model, occurs
in the middle layer. This means that both the wave-induced
and the tide-induced mixings cannot reach the middle layer
where the background mixing dominates. For the levels
below 40 m, the diffusion coefficient increases downward
from April to August. The increasing diffusion coefficient
could be attributed to the effect of tide-induced mixing.
[21] There are several differences between the estimated

diffusion coefficient and that used in the model. First,
Figure 8 shows that the simulated depth of upper mixed
layer is about 10 m from April to August, while the profiles
of estimated diffusion coefficients reveal that the depth is
about 15 m. This suggests that the wave-induced mixing
used in the coupled model is still not enough to present the
real upper mixed layer although the modeled upper mixed
layer is much more reasonable than the result generated by
the original POM model [Qiao et al., 2004a, 2004b].
Second, one can see from Figure 8 that the diffusion
coefficient is almost a constant in the middle layer, i.e.,
kz = 0.20 cm2 s�1. However, the estimated diffusion
coefficient reveals a seasonal variation in the same layer,
as shown in Figure 6 and Table 1. Even so, the mean value
of the estimated diffusion coefficients in the middle layer
averaged from June to September, 0.28 cm2 s�1, is close to
the background mixing coefficient of 0.20 cm2 s�1 in the
POM model.
[22] In order to check the dependence of the estimated

diffusion coefficient on the number of the temperature
observations being used, the total original temperature
observations at Station A are divided into two groups.
Group 1 contains the data observed before 1970 (including
1970), which includes about 25% of the total original data.
The remaining data set forms Group 2. Repeating the
procedures in section 3, the respective diffusion coefficients
from the two groups of data are estimated as shown in
Figure 9. One can see that the profiles of the estimated
diffusion coefficients are similar in June, August, and
September, but some differences are noted for those in
April, May, and July. In the upper and middle layers, the

Figure 7. Estimated diffusion coefficient (kz) versus the
squared buoyancy frequency (N2) in the middle layer at
Station A. Triangles present the data fromApril to September.
The solid line presents kz = 1.55 � 10�8m2s�3/N2.
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MDCs of Group 1 are consistent with those in Group 2 in
June, August, and September (Table 2). In May, the diffu-
sion coefficients of Group 1 are smaller than those of
Group 2 at the levels above 30 m, while the reverse is true
for those below 40 m. In July, the diffusion coefficients of
Group 1 are smaller than those of Group 2 in all layers.
Despite those differences in individual values, the vertical
structures of the diffusion coefficients of the two groups are
similar in the two months. In April, the coefficient profile of
Group 1 is clearly different from that of Group 2. This could
be due to a weak stratification in April and a small number

of data being used in Group 1. In fact, the study area does
not form a strong thermocline in April. Any synoptic
atmospheric process may influence the temperature from
the surface to the bottom, thus contributing to the estimated
diffusion coefficients. When the number of observations is
statistically insufficient, the effects of synoptic atmospheric
processes cannot be properly removed from the monthly
climatological mean. Thus, enough observations are neces-
sary to obtain a mean status of the temperature structure. In
Figure 6, the diffusion coefficients are estimated from
enough temperature observations with the number of orig-

Figure 9. Diffusion coefficient estimated from the temperature observations at Station A. Dashed line:
Group 1 (before 1970); solid line: Group 2 (after 1970).

Figure 8. Monthly diffusion coefficient in the coupled model at Station A.
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inal temperature profiles of about 95 per month. Therefore,
the diffusion coefficients in Figure 6 represent the realistic
means from 1954 to 1985.
[23] Figure 10 shows the estimated diffusion coefficients

versus the squared buoyancy frequency in the middle layer
before and after 1970. The inverse relationship between the
diffusion coefficients and the squared buoyancy frequency
is represented in the two groups of data. The proportionality

coefficient remains at about 1.55 � 10�8 m2 s�3. The
different temperature observations between the two groups
of data do not influence the proportionality relationship.
[24] As pointed out earlier, the proportionality coefficient

being a constant as illustrated in Figures 7 and 10 implies
that the turbulence energy dissipation rate in the middle
layer averaged from 1954 to 1985 is invariant with season at
Station A. Generally, the winds and tides are the only two
possible sources of mechanical energy to drive the interior
mixing [Munk and Wunsch, 1998]. Semidiurnal tides are
dominant in the YS and the tides show little variation with
season [Fang et al., 2004]. It therefore seems reasonable to
consider the tides as a stationary energy source for the
diapycnal mixing. Monthly climatological wind speeds at
Station A from COADS [da Silva et al., 1994a, 1994b] are

shown in Figure 11. The wind speeds show an equable
behavior from April to September although they are obvi-
ously larger in winter than those in summer. During the time
period from April to September, the maximum wind speed
is 6.3 ms�1 (in April) and the minimum is 5.4 ms�1 (in June),
with a standard deviation of 0.32 ms�1. The small
variation in wind speeds implies that the energy from
the winds to derive the diapycnal mixing could almost be
invariant at Station A from April to September. It is
therefore not surprising that a constant proportionality
coefficient exists between the diffusion coefficient and
the squared buoyancy frequency, as illustrated in Figures 7
and 10.
[25] It should be noted that the temperature diffusion

equation is the one being used to establish the scheme for
the estimation of the diffusion coefficient. Neglecting the
advection terms induces an uncertainty in the estimated
diffusion coefficient. In this study, this uncertainty is
estimated by using the results from the MASNUM coupled
model. The results show that the ratio of the diffusion term
to the advection terms is larger than 5 from the surface to
the bottom in the central YS. This indicates that the
estimated diffusion coefficients, as shown in Figures 6
and 9, represent reality at Station A. However, it should
be kept in mind that the scheme, used in this study to
estimate the diffusion coefficient, is applicable only when
diffusion controls the temperature variation.

5. Summary

[26] This study provides an insight into the mechanisms of
seasonal temperature variation in the YS. The temperature
observations from 1954 to 1985 show that the bottom
temperature lags 3–4 months behind the surface temperature
in reaching a maximum in the central YS. The MASNUM
wave-tide-circulation coupled model is used to simulate the
seasonal variation of temperature and to investigate the
dominant physical process which controls the temperature
variation below the surface layer. The coupled model repro-
duces the observed time lag phenomena. Further analysis

Table 2. Mean Diffusion Coefficient Estimated From Temperature

Observations at Station A Before (Group 1) and After 1970

(Group 2)

Apr May Jun Jul Aug Sep

Upper layer, cm2 s�1 Group 1 4.9 2.5 2.5 1.0 0.88 1.8
Group 2 7.0 4.0 2.6 1.7 1.0 1.9

Middle layer, cm2 s�1 Group 1 10.3 0.89 0.28 0.06 0.10 0.23
Group 2 4.1 0.9 0.38 0.15 0.13 0.27

Figure 10. Estimated diffusion coefficient (kz) versus the
square of buoyancy frequency (N2) in the middle layer at
Station A. Triangles represent the data of Group 1 (before
1970) from April to September. Squares represent the data
of Group 2 (after 1970). The solid line represents kz = 1.55�
10�8m2s�3/N2.

Figure 11. Monthly climatological wind speeds at
Station A.
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indicates that the diffusion process is the key factor governing
the temperature variation below the surface layer.
[27] Based on the diffusion equation of temperature, a

scheme has been developed to estimate the diffusion coeffi-
cient from temperature observations by inverse methods. The
cost function is specified as the mean squared temperature
error divided by the mean squared temperature excursion
between two continuous observation profiles. At Station A
(36�000N, 124�000E), the diffusion coefficient is estimated for
the time period from April to September. The diffusion
coefficient profiles share a common feature. The coefficient
peaks at the surface, and then decreases with depth down to
20 m. In the middle layer (from 20 to 40 m), the coefficient
remains small. The MDCs are almost one order of magnitude
smaller in the middle layer than the upper layer (from 0 to
15 m), except in April. The mean MDC in the middle layer,
averaged from June to September, is 0.28 cm2 s�1. In
addition, the estimated diffusion coefficient in the middle
layer is found to be inversely proportional to the squared
buoyancy frequency with the proportionality coefficient of
about 1.55 � 10 �8m2 s�3. The inverse proportionality is
consistent with the Osborn’s relation if the turbulence energy
dissipation rate is assumed to be a constant.

Appendix A: A Scheme to Estimate the
Diffusion Coefficient

[28] Numerical results indicate that the diffusion is dom-
inant for the water temperature variation below the surface
layer in the central YS, i.e.,

@T

@t
¼ @

@z
kz
@T

@z

� �
: ðA1Þ

To close the equation, boundary conditions are needed. For
simplicity, the surface temperature rather than the surface
heat flux is specified as the surface boundary condition,

T jz¼0 ¼ Tsurf tð Þ: ðA2Þ

Tsurf can be provided by observed surface temperature
variation for estimating the diffusion coefficient. The
bottom boundary condition is specified as zero flux. In
general, the topographic slope is gentle. Therefore, the
bottom boundary condition can be written as

@T

@z
jz¼�H ¼ 0: ðA3Þ

Discretizing equation (A1) yields

Tm
i ¼ Tm�1

i þ kzð Þidt
dzð Þ2

Tm�1
iþ1 � Tm�1

i

� �
� kzð Þi�1dt

dzð Þ2
Tm�1
i � Tm�1

i�1

� �
;

ðA4Þ

where the superscripts denote the time step index and the
subscripts the vertical grid index. dt and dz are the time step
and vertical grid spacing, respectively. When the initial
temperature profile, the surface temperature variation, and the
diffusion coefficient are all provided, the temperature
variations at other levels can be calculated by using

equation (A4) with the boundary conditions (A2) and (A3).
In general, it is difficult to obtain the diffusion coefficient in
the real ocean. We apply a method to invert for the diffusion
coefficient from the continuous temperature profiles.
[29] Let ~Ti

1 and ~Ti
2 denote the continuous temperature

profiles observed at time t1 and t2, the time interval t2 � t1 =
M d t. Surface temperature used in the upper boundary
condition can be obtained by linearly interpolating from ~Ti

1

and ~Ti
2. Once an initial guess profile for the diffusion

coefficient is provided, ksi , the temperature profile can be
calculated using equation (A4). After M time steps, we
obtain Ti

M.
[30] The cost function for inverting for the diffusion

coefficient kz is defined as

F ¼
XI
i¼1

TM
i þ dTM

i � ~T2
i

Ri

� �2

; ðA5Þ

where Ri is a weighting coefficient which is specified as the
temperature excursions between the two continuous tem-
perature profiles, i.e., Ri = j~Ti

2 � ~Ti
1j, dTi

M denotes the
change in temperature due to d ks , then we have

dTM
i ¼

XI
l¼1

@TM
i

@ ksð Þl
dksð Þl: ðA6Þ

The cost function F can reach the local minimum value as
long as

@F

@ ksð Þj
¼ 0; ðA7Þ

that is

XI
i¼1

2

R2
i

TM
i � ~T2

i þ
XI
l¼1

@TM
i

@ ksð Þl
dksð Þl

 !
@TM

i

@ ksð Þj
¼ 0: ðA8Þ

Equation (A8) with j from 1 to I is a group of equations with
the variables (dks)j, j = 1, 2, ...I. We obtain dks by solving

the group of equations.
@TM

i

@ðksÞj
can be calculated from

equation (A4). Defining

Dm
i;j ¼

@Tm
i

@ kzð Þj
; ðA9Þ

we obtain the iterative equation

Dmþ1
i;j ¼ Dm

i;j þ
di;jdt

dzð Þ2
Tm
iþ1 � Tm

i

� �
� di�1;jdt

dzð Þ2
Tm
i � Tm

i�1

� �
þ kzð Þidt

dzð Þ2

	 Dm
iþ1;j � Dm

i;j

	 

� kzð Þi�1dt

dzð Þ2
Dm

i;j � Dm
i�1;j

	 

; ðA10Þ

where di,j is the Kronecker operator,

di;j ¼
0; for i 6¼ j;
1; for i ¼ j:

�
ðA11Þ

From equation (A10), one can get
@TM

i

@ðksÞj
.
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[31] After getting (dks)i, a new guess value for the
diffusion coefficient, k0s, can be calculated,

k 0si ¼ ksi þ dksi: ðA12Þ

After repeating the above processes, one can get the profile
of diffusion coefficient. Tests show that the inversion
scheme is convergent. F = 0.01 is specified as a criterion to
judge whether the estimation process can be terminated or
not. If the cost function F is larger than 0.01, the estimation
process continues. If F is less than 0.01, the estimation
process is terminated and the profile of diffusion coefficient
is accepted. It is worth noting that the estimated diffusion
coefficient from the neighboring temperature profiles
observed at times t1 and t2 is invariant during the time
period between t1 and t2. The variation of diffusion
coefficient with time can be obtained by estimating the
diffusion coefficient from a series of temperature profiles
observed at times t1, t2,. . ..tN.
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